
Regressing Sample Pitching Stats in Order to Estimate True Values 
 
 
Part I 
 
As I’ve stated many time before, DIPS ERA, or substituting league average hit rate ($H 
or (S+D+T)/(PA-BB-SO-HR), for a pitcher’s actual sample $H, in order to estimate his 
true ERA, is a poor man’s regression.  The idea behind DIPS and DIPS ERA is that any 
deviation in a pitcher’s sample $H from some typical $H, is mostly due to luck, as well as 
the average defense behind the pitcher. 
 
Since it has been shown that pitchers do have some control (skill) over their $H, i.e., that 
less than 100% of those deviations are due to luck and defense, it is not technically 
correct to substitute some constant $H for a pitcher’s sample $H in order to estimate his 
true ERA.  In other words, it is not correct to regress a pitcher’s $H 100% towards some 
constant, as you would if a pitcher had no actual control over his $H.  However, because 
a pitcher does have only a little control over his $H, it should be regressed aggressively 
towards some constant.   
 
Moreover, there is a luck component in a pitcher’s other rates as well.  Therefore all of a 
pitcher’s sample component stats should be regressed towards some constant, and not just 
$H, in order to estimate his true ERA.  The assumption in computing a DIPS ERA and 
then passing it off as an estimate of a pitcher’s true ERA, is that $H can be regressed 
100% and that all other components do not have to be regressed at all.  This is not really 
the assumption in DIPS of course – the only thing that DIPS assumes is that doing it this 
way yields a better estimate of a pitcher’s true ERA than either his actual sample ERA or 
his sample ERC (component ERA). 
 
If we don’t take the DIPS shortcut (the poor man’s regression), and actually apply some 
regressions to each of a pitcher’s sample component stats, we should be able to come up 
with a much better estimate of a pitcher’s true ERA.  That should also enable us to come 
up with a much better projection for a pitcher, since an estimate of a player’s true 
anything is essentially the same as his projection. 
 
The important questions are how much do we regress each sample stat, towards what 
constant should each stat be regressed, and what is the best way to express each stat 
before doing the regressing?  Before I answer those questions, let me add that one of the 
major shortcomings of DIPS ERA, in terms of estimating a pitcher’s true ERA, is that it 
doesn’t consider the sample size of a pitcher’s stats.   
 
How much you regress a sample stat depends on (is a function of) two things:  One, the 
element of luck in that stat, which is informed by the distribution of talent in the 
population vis-à-vis that stat, and two, sample size.  Since we know that the element of 
luck in a pitcher’s sample $H is large, we also know that we will regress that stat 
aggressively when converting a pitcher’s stats from “sample to true.”  That’s the whole 



point of DIPS.  Instead of regressing aggressively, however, DIPS takes a short cut and 
regresses all the way.   
 
As I said, regression is also a function of sample size, so if we have a large sample of 
pitcher data, we should regress $H less aggressively than if we have a small sample of 
data, even though much of a pitcher’s sample $H is luck.  Basically, as with all sample 
data, the larger the amount of data, the less luck there is, proportionally speaking.  Of 
course, if $H were all luck, which it is not, then sample size wouldn’t matter.  We would 
simply regress a pitcher’s sample $H all the way to some constant (substitute that 
constant), a la DIPS, no matter how large a sample that $H was based on.  So DIPS is 
more correct, at least as far as $H is concerned, for small samples than for large samples. 
 
But what about the other components (BB, SO rate, etc.) in a pitcher’s line?  I already 
said that these stats also need to be regressed if we want to estimate a pitcher’s true stats, 
and ultimately his true ERA or ERC.  Again, DIPS assumes that all of a pitcher’s stats 
other than $H are mostly skill, such that they don’t need to be regressed at all.  At least it 
takes that shortcut.  The problem is that, as with $H, the smaller the sample the more 
these other stats need to be regressed, despite the fact that they have a large skill 
component.  So when you compute a DIPS ERA, the smaller the sample of pitcher data, 
the more of a mistake you make by not regressing these other stats.   
 
To summarize, the smaller the sample size, the more DIPS is correct in regressing $H all 
the way, but the less it is correct in not regressing the other stats at all.  So no matter what 
the size of the data, DIPS does not do a very good job of estimating a pitcher’s true stats.  
I suppose that since $H will be regressed fairly aggressively even with large samples of 
data, but that the size of the regressions for all the other stats varies greatly with the 
sample size, DIPS works best for large sample sizes.  In fact, it doesn’t work very well at 
all for small samples, since it ignores the requisite regressions for every component stat 
but $H.  Of course, if all of a pitcher’s other stats (other than $H) , even for a small 
sample, are around league average, DIPS works fine, as a regression, large or small, will 
not really change a stat that is near league average in the first place.  Then again, if most 
of a pitcher’s stats are around league average, we don’t need much help in estimating his 
true stats anyway. 
 
One thing I was never happy about with DIPS was the arbitrary distinction between hits 
that stay in the ballpark and home runs.  The original purpose of DIPS, I think, was to 
come up with a defense independent pitching stat, hence the name DIPS.  However, since 
we can evaluate defense separately from a pitcher’s stats, and adjust those stats 
accordingly, what we really should be concerned with in terms of regressing a pitcher’s 
stats is luck and not defense. In fact, subsequent research on DIPS has suggested that 
most of the variability in a pitcher’s sample $H is not due to defense, but to luck.  I have 
always advocated changing the name DIPS to LIPS. Unfortunately, it never stuck. 
 
If we focus on luck rather than defense, there is probably a better way to 
compartmentalize a pitcher’s stats that what DIPS does.  With DIPS, HR’s per something 
(usually BIP) are one category, and non-hr hits per non-HR BIP are another.  Without 



going into the details, I have found that a pitcher’s skill can be better captured by looking 
at HR’s, doubles, and triples as one entity (extra base hits), and singles as another entity.   
The denominator I use for expressing extra base hits (D, T, and HR) as a rate stat is BIP, 
and the denominator for singles is BIP minus HR’s.  Since we are not concerned with 
defense, the distinction between a home run and a double or triple makes little sense.  In 
fact, it could be argued that the same skill is involved in a pitcher allowing a home run as 
it is in allowing a double or triple (at least a fly ball or line drive double or triple) – they 
are all hard hit and/or are long fly balls.  The other rate stat I look at (besides the 
traditional $BB, which is BB/PA and $SO, which is SO/(PA-BB) is HR per extra base hit 
(HR/(D+T+HR).  As it turns out, there appears to be a much larger skill component in 
extra base hits per BIP than in HR per extra base hits, which does indeed suggest that a 
pitcher’s home runs, doubles, and triples allowed are part of the same skill set, and 
certainly more related than singles, doubles, and triples, as is the DIPS “grouping”. 
 
Let me cut to the chase.  I looked at park and defense (using regressed team UZR’s) 
adjusted component pitching stats from 1999 to 2003.  From these stats, I looked at all 
pitchers who had a certain range of TBF’s in two years AND had at least 200 TBF’s in 
the following year.  The first two years’ stats were treated as the sample stats and the 
following year’s stats were treated as the true stats.  The ratio of the two for various 
sample sizes and for various high and low component rates, as well as the mean of each 
stat in the following year, were used to compute the proper regression coefficients for 
each component rate stat.  In order to create or force regression, I had to look only at 
pitchers who had non-average rates for each of the components in the sample years.   
 
Here is how each rate stat is defined: 
 
$BB=BB/PA 
$SO=SO/(PA-BB) 
$E=(D+T+HR)/(PA-BB-SO) 
$HR=HR/(D+T+HR) 
$S=S/(PA-BB-SO-D-T-HR) 
 
After forcing regressions, here are the interpolated regression values for each of these 
stats and for various numbers of TBF’s: 
 
TBF $S $E $HR $BB $SO 
100 .96 .95 .99 .80 .65 
400 .85 .75 .95 .50 .25 
600 .70 .60 .90 .30 .20 
1000 .65 .50 .85 .20 .10 
1400 .60 .45 .82 .15 .05 
1700 .50 .30 .80 .10 .01 
 
The following are the normalized values towards which each sample rate stat should be 
regressed, based on the number of sample TBF’s.  Basically these numbers represent the 
average quality, vis-à-vis each stat, of the population of pitchers who pitch to X number 



of batters in any given year.  In reality, they are probably more a function of whether a 
pitcher is a starter or a reliever than how many batters he faced in a season.  Therefore, in 
this chart, TBF is essentially a proxy for starter/reliever status. 
 
TBF $S   $E $HR $BB $SO 
100 .98 1.01 1.00 1.09 1.00 
400 .97 .96 .97 .99 1.04 
600 .99 .96 .95 .95 1.05 
1000 1.01 1.01 .98 .90 .95 
1400 1.00 .98 .99 .89 .98 
1700+ .97 .98 .99 .91 .99 
 
 
Keep in mind that these are rough estimates based on limited sample data, and that there 
are some selective sampling problems inherent in the data as well.  Nevertheless, I think 
these are pretty good estimates of the true regression coefficients for these pitcher rate 
stats. 
 
Also keep in mind that the whole idea of regressing a pitcher’s stats toward a particular 
constant or mean is merely a rough approximation of the exact method for estimating a 
pitcher’s true values for each of his stats, and ultimately, his true ERA or ERC.  This 
method of regression (regressing linearly toward a constant) would be pretty close to the 
real method, if the distribution of pitching talent were normal.  However, as Bill James 
likes to point out, the distribution of talent in baseball, and probably in all sports, is not 
normal, as it is actually a subset of the very tail end of the normal distribution of athletic 
talent among young males. 
 
For example, let’s look at the distribution in sample $BB (normalized to all pitchers) 
among all pitchers who had at least 500 TBF’s in any year (2000-2002).  This group 
represents most full-time starters.  The mean normalized $BB, weighted by the number of 
TBF’s, is .91.  If you don’t weight by the number of TBF’s, the mean is .92.  The median 
is .92.  The SD is .078. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table 1: $BB (Min 500 TBF) 
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Let’s look at the same distribution for $SO, again for only pitchers who had at least 500 
TBF’s in one season.  The mean, weighted by TBF’s, is .96.  Non-weighed, it is .95.  The 
median is .925.  The SD is .068. 
 
 
Table 2: $SO (min 500 TBF) 
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If we reduce the minimum number of TBF’s to 250, essentially including all regular 
relievers and starters, the $BB distribution looks like this: 
 
  



Table 3: $BB (Min 250 TBF) 
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The weighted mean is .95 and the un-weighted mean is .97.  The median is .97 and the 
SD is .093. 
 
 
 
 
 
For $SO, it looks like this: 
 
 
Table 4: $SO (Min 250 TBF) 
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The weighted mean is .99 and the un-weighted mean is 1.01.  The median is .96 and the 
SD is .094. 
 
Remember, these are distributions of sample stats and not true stats.  In order to see the 
distribution of talent in baseball, we would have to take each player’s sample stats, 
convert them into true stats by regressing, and then look at the distribution. 
 
Finally, let’s do a real life regression in order to convert a pitcher’s sample stats into true 
stats and then use those true stats to compute a true ERC which will serve as an estimate 
of that pitcher’s true talent or ERA projection: 
 
Let’s take one of Kansas City’s young guns, Jeremy Affeldt.  He pitched for KC in 2002 
and 2003.  We won’t consider his minor league performance prior to 2002.  Affeldt has a 
career major league ERA of 4.20.  According to baseballreference.com, Affeldt’s ERA+ 
(normalized and park and league adjusted) for those two years is 1.21. 
 
Here are Affeldt’s normalized and adjusted components stats for 2002-2003: 
 
TBF $S   $E $HR $BB $SO 
874 1.09 1.01 .82 1.03 1.19 
 
Interpolating from the charts above, here are the regression numbers and constants for a 
player with 874 TBF’s: 
 
 $S $E $HR $BB $SO 
Regression  .67 .54 .87 .24 .14 
Constant 1.00 1.00 .97 .92 .97 
 
After doing the regressions, here then are Affeldt’s true stats: 
 
TBF $S   $E $HR $BB $SO 
874 1.03 1.005 .95 1.00 1.16 
 
Now let’s convert those back into per 500 PA (remember, up until now, they all have 
different denominators), so we can compute an ERC. 
 
TBF S   E HR BB SO 
874 1.00 .97 .92 1.00 1.16 
 
We can now convert this into a normalized ERC of 1.07 or an ERA+ of 107.  Essentially 
Affeldt’s sample ERA+ of 1.21 ended up being regressed to a true ERA+ of 1.07, which 
would also be a good estimate of his 2004 projection, not including any adjustments for 
experience (pitchers generally get better with experience up to a certain point – so we 
would project his ERA+ to be slightly better than 107 in 2004). 
 



If you look at the above values and computations, you can see that one reason for 
Affeldt’s very good sample ERA+ of 1.21 is his low HR rate per extra base hit (.82), 
relative to his extra base hit rate per BIP (1.01).  Because my research suggests that a 
pitcher’s extra base hit rate is a much better predictor of his HR rate than is a pitcher’s 
actual HR rate, we would expect his HR rate to regress quite a bit this year, hence the 
large difference between his sample ERA+ and his true or projected ERA+. 
 
The same process can be done to any pitcher’s sample stats in order to create an ERA 
projection.  As with batters, a weighted average of a pitcher’s previous years’ stats should 
be done first.  In other words, Affeldt’s 2003 stats should have been weighted more 
heavily that his 2002 stats.   Batter projections involve the same process, although the 
denominators, and perhaps numerators, for the rate stats should probably be different, 
triples need to be considered separately from doubles, and the regression numbers and 
constants will be different of course.  In my next article, I will present the proper 
estimated values for regressing sample batter stats. 
 
Part II 
 
As promised, here are the regression values and constants (towards which you would 
regress) for batters.  The following rate stats are used for batters: 
 
$BB=BB/PA 
$SO=SO/(PA-BB) 
$HR=HR/(PA-BB-SAO) 
$H=(S+D+T)/(PA-BB-SO-HR) 
$E=(D+T)/(S+D+T) 
$T=T/(D+T) 
 
Batter Regression Values 
 
PA $H $E $T $HR $BB $SO 
200 .85 .80 .75 .65 .45 .30 
400 .75 .70 .70 .45 .25 .20 
600 .70 .60 .60 .30 .15 .15 
800 .55 .55 .50 .20 .10 .10 
1100+ .50 .50 .40 .10 .10 .05 
 
 
Batter Regression Constants 
 
PA $H $E $T $HR $BB $SO 
200 1.00 1.02 1.18 .92 .88 1.06 
400 1.01 1.00 1.04 .81 .94 .98 
600 1.01 1.01 .91 .86 .95 .96 
800 1.00 1.03 .95 1.05 .96 .95 



1100+ 1.01 1.03 .92 1.25 1.1 .95 
 
Keep in mind that the regression constants are based on the averages of many batters who 
for one reason or another had X number of PA’s in years one and two (the sample years).  
As you can see, players who had many PA’s in those years tended to be the best overall 
hitters, with power, not much speed, and a good eye.  Batters who had the fewest PA’s in 
the sample years tended to be fast, and with less power and fewer walks – basically the 
worst hitters. 
 
In practice, when you are regressing a hitter’s sample stats in order to do a projection 
(estimate his true stats), you should use the above regression constants as merely a guide.  
Remember that these constants are designed to be the averages of the population from 
which these batters came.  If, for example, you are regressing the stats of a speedy hitter 
who also has many PA’s (basically a full- time player), you would want to use a $T 
constant of 1.2 or something like that rather than the .92 or .95 in the chart above for 
players with lots of PA’s in a 2-year period.  Just be careful that you don’t define a 
player’s population from his sample stats.  In other words, don’t say that your player 
comes from a population of speedy players (such that you use a 1.2 $T constant) just 
because he has a very high sample $T.  That will completely defeat the purpose of the 
regression.  Be sure that your regression constant is reflected in or defined by some other 
quality or attribute other than the stat being regressed. 
 
The same thing holds true for pitcher regression constants as well.  For example, if a 
particular pitcher throws a 98 MPH fastball, you may want to regress his $SO to a 
constant other than those indicated by the above charts, regardless of how many TBF’s he 
has, or whether he is a starter or reliever.  If you look at the pitcher charts again, you will 
see that the typical starter with many TBF’s will regress towards a $SO of .95 to .98, 
whereas a typical reliever with fewer TBF’s will regress towards a $SO of 1.02 to 1.05.  
If that 98 MPH pitcher were a starter, you may still want to regress his $SO towards 
something like 1.05.  As with the batters, be careful when monkeying around with the 
pitcher regression constants. 
 
Happy regressing and projecting! 


